Open Gromov-Witten Invariants from the Augmentation Polynomial
نویسنده
چکیده
A conjecture of Aganagic and Vafa relates the open Gromov-Witten theory of X = OP1(−1,−1) to the augmentation polynomial of Legendrian contact homology. We describe how to use this conjecture to compute genus zero, one boundary component open Gromov-Witten invariants for Lagrangian submanifolds LK ⊂ X obtained from the conormal bundles of knots K ⊂ S3. This computation is then performed for two non-toric examples (the figure-eight and three-twist knots). For (r, s) torus knots, the open Gromov-Witten invariants can also be computed using Atiyah-Bott localization. Using this result for the unknot and the (3, 2) torus knot, we show that the augmentation polynomial can be derived from these open Gromov-Witten invariants.
منابع مشابه
Stationary Gromov-witten Invariants of Projective Spaces
We represent stationary descendant Gromov-Witten invariants of projective space, up to explicit combinatorial factors, by polynomials. One application gives the asymptotic behaviour of large degree behaviour of stationary descendant Gromov-Witten invariants in terms of intersection numbers over the moduli space of curves. We also show that primary Gromov-Witten invariants are ”virtual” stationa...
متن کاملHilbert scheme intersection numbers , Hurwitz numbers , and Gromov - Witten invariants
Some connections of the ordinary intersection numbers of the Hilbert scheme of points on surfaces to the Hurwitz numbers for P1 as well as to the relative Gromov-Witten invariants of P1 are established.
متن کاملPositivity Of Equivariant Gromov–Witten Invariants
We show that the equivariant Gromov-Witten invariants of a projective homogeneous space G/P exhibit Graham-positivity: when expressed as polynomials in the positive roots, they have nonnegative coefficients.
متن کاملKEVIN COSTELLO Definition
This is the first of two papers which construct a purely algebraic counterpart to the theory of Gromov-Witten invariants (at all genera). These GromovWitten type invariants depend on a Calabi-Yau A∞ category, which plays the role of the target in ordinary Gromov-Witten theory. When the Fukaya category of a compact symplectic manifold X is used, it is shown, under certain assumptions, that the u...
متن کاملThe Double Gromov-witten Invariants of Hirzebruch Surfaces Are Piecewise Polynomial
We define the double Gromov-Witten invariants of Hirzebruch surfaces in analogy with double Hurwitz numbers, and we prove that they satisfy a piecewise polynomiality property analogous to their 1-dimensional counterpart. Furthermore we show that each polynomial piece is either even or odd, and we compute its degree. Our methods combine floor diagrams and Ehrhart theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017